Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 6
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 6 Proposition 14a
Statement
T
w
o
e
q
u
a
l
a
r
e
a
p
a
r
a
l
l
e
l
o
g
r
a
m
s
(
A
B
C
D
,
E
F
G
H
)
w
i
t
h
a
p
a
i
r
o
f
e
q
u
a
l
a
n
g
l
e
s
(
∠
B
A
D
∠
F
E
H
)
,
h
a
v
e
t
h
e
s
i
d
e
s
a
d
j
a
c
e
n
t
t
o
t
h
e
e
q
u
a
l
a
n
g
l
e
s
i
n
v
e
r
s
e
l
y
p
r
o
p
o
r
t
i
o
n
a
l
(
A
B
E
F
E
H
A
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
}
,
{
}
}
,
{
P
a
r
a
l
l
e
l
o
g
r
a
m
[
{
A
.
,
B
.
,
C
.
,
D
.
}
]
,
P
a
r
a
l
l
e
l
o
g
r
a
m
[
{
E
.
,
F
.
,
G
.
,
H
.
}
]
,
P
l
a
n
a
r
A
n
g
l
e
[
{
B
.
,
A
.
,
D
.
}
]
P
l
a
n
a
r
A
n
g
l
e
[
{
F
.
,
E
.
,
H
.
}
]
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
C
.
,
D
.
}
]
]
A
r
e
a
[
P
o
l
y
g
o
n
[
{
E
.
,
F
.
,
G
.
,
H
.
}
]
]
}
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
H
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
H
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
Explanations
Let
A
B
,
B
C
be equal and equiangular parallelograms having the angles at
B
equal, and let
D
B
,
B
E
be placed in a straight line; therefore
F
B
,
B
G
are also in a straight line.
[
I
.
1
4
]
I say that, in
A
B
,
B
C
, the sides about the equal angles are reciprocally proportional, that is to say, that, as
D
B
is to
B
E
, so is
G
B
to
B
F
. For let the parallelogram
F
E
be completed.
Since, then, the parallelogram
A
B
is equal to the parallelogram
B
C
, and
F
E
is another area, therefore, as
A
B
is to
F
E
, so is
B
C
to
F
E
.
[
V
.
7
]
But, as
A
B
is to
F
E
, so is
D
B
to
B
E
,
[
V
I
.
1
]
and, as
B
C
is to
F
E
, so is
G
B
to
B
F
.[id.]therefore also, as
D
B
is to
B
E
, so is
G
B
to
B
F
.
[
V
.
1
1
]
Therefore in the parallelograms
A
B
,
B
C
the sides about the equal angles are reciprocally proportional.
Classes
Euclid's Elements
Theorems
Quadrilaterals
EuclidBook6
Related Theorems
EuclidBook6Proposition14b
EuclidBook6Proposition15a