Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 6
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 6 Proposition 16b
Statement
I
f
t
h
e
a
r
e
a
s
o
f
t
w
o
r
e
c
t
a
n
g
l
e
s
(
A
B
C
D
,
E
F
G
H
)
a
r
e
e
q
u
a
l
,
t
h
e
n
t
h
e
c
o
r
r
e
s
p
o
n
d
i
n
g
s
i
d
e
s
o
f
t
h
o
s
e
r
e
c
t
a
n
g
l
e
s
a
r
e
i
n
v
e
r
s
e
l
y
p
r
o
p
o
r
t
i
o
n
a
l
(
A
B
F
G
E
F
B
C
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
}
}
,
{
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
C
.
,
D
.
}
]
,
P
o
l
y
g
o
n
[
{
E
.
,
F
.
,
G
.
,
H
.
}
]
}
,
"
E
q
u
i
a
n
g
u
l
a
r
"
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
G
.
]
d
.
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
C
.
,
D
.
}
]
]
A
r
e
a
[
P
o
l
y
g
o
n
[
{
E
.
,
F
.
,
G
.
,
H
.
}
]
]
,
a
.
b
.
c
.
d
.
}
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
G
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
,
a
.
d
.
c
.
b
.
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
G
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
Explanations
Let the rectangle contained by
A
B
,
F
be equal to the rectangle contained by
C
D
,
E
; I say that the four straight lines will be proportional, so that, as
A
B
is to
C
D
, so is
E
to
F
.
For, with the same construction, since the rectangle
A
B
,
F
is equal to the rectangle
C
D
,
E
, and the rectangle
A
B
,
F
is
B
G
, for
A
G
is equal to
F
, and the rectangle
C
D
,
E
is
D
H
, for
C
H
is equal to
E
, therefore
B
G
is equal to
D
H
.
And they are equiangular.
But in equal and equiangular parallelograms the sides about the equal angles are reciprocally proportional.
[
V
I
.
1
4
]
Therefore, as
A
B
is to
C
D
, so is
C
H
to
A
G
.
But
C
H
is equal to
E
, and
A
G
to
F
; therefore, as
A
B
is to
C
D
, so is
E
to
F
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook6
Related Theorems
EuclidBook6Proposition16a
EuclidBook6Proposition17a
EuclidBook6Proposition17b