Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 6
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 6 Proposition 1a
Statement
I
f
t
w
o
t
r
i
a
n
g
l
e
s
(
△
A
B
C
,
△
A
C
D
)
h
a
v
e
t
h
e
s
a
m
e
a
l
t
i
t
u
d
e
,
t
h
e
n
t
h
e
r
a
t
i
o
o
f
t
h
e
a
r
e
a
o
f
t
h
e
t
r
i
a
n
g
l
e
s
i
s
e
q
u
a
l
t
o
t
h
e
r
a
t
i
o
o
f
t
h
e
i
r
b
a
s
e
s
(
B
C
,
C
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
}
,
{
}
}
,
{
L
i
n
e
[
{
B
.
,
C
.
,
D
.
}
]
,
T
r
i
a
n
g
l
e
[
{
A
.
,
B
.
,
C
.
}
]
,
T
r
i
a
n
g
l
e
[
{
A
.
,
C
.
,
D
.
}
]
}
,
A
r
e
a
[
T
r
i
a
n
g
l
e
[
{
A
.
,
B
.
,
C
.
}
]
]
A
r
e
a
[
T
r
i
a
n
g
l
e
[
{
A
.
,
C
.
,
D
.
}
]
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
A
r
e
a
[
T
r
i
a
n
g
l
e
[
{
A
.
,
B
.
,
C
.
}
]
]
A
r
e
a
[
T
r
i
a
n
g
l
e
[
{
A
.
,
C
.
,
D
.
}
]
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
Explanations
coming soon
Classes
Euclid's Elements
Theorems
Triangles
EuclidBook6
Related Theorems
EuclidBook1Proposition38
EuclidBook1Proposition41
EuclidBook6Proposition1b