Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 6
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 6 Proposition 32
Statement
I
f
t
w
o
t
r
i
a
n
g
l
e
s
(
△
A
B
C
,
△
C
D
E
)
w
h
i
c
h
h
a
v
e
t
w
o
s
i
d
e
s
o
f
o
n
e
p
r
o
p
o
r
t
i
o
n
a
l
t
o
t
w
o
s
i
d
e
s
o
f
t
h
e
o
t
h
e
r
(
A
B
B
C
C
D
D
E
)
,
a
n
d
t
h
e
c
o
n
t
a
i
n
e
d
a
n
g
l
e
s
(
∠
A
B
C
,
∠
C
D
E
)
e
q
u
a
l
,
a
r
e
j
o
i
n
e
d
a
t
a
p
o
i
n
t
(
C
)
,
s
o
a
s
t
o
h
a
v
e
t
h
e
i
r
c
o
r
r
e
s
p
o
n
d
i
n
g
s
i
d
e
s
p
a
r
a
l
l
e
l
,
t
h
e
r
e
m
a
i
n
i
n
g
s
i
d
e
s
a
r
e
i
n
t
h
e
s
a
m
e
l
i
n
e
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
}
,
{
}
}
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
T
r
i
a
n
g
l
e
[
{
A
.
,
B
.
,
C
.
}
]
,
T
r
i
a
n
g
l
e
[
{
C
.
,
D
.
,
E
.
}
]
}
,
"
C
o
u
n
t
e
r
c
l
o
c
k
w
i
s
e
"
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
D
.
,
E
.
]
,
P
l
a
n
a
r
A
n
g
l
e
[
{
A
.
,
B
.
,
C
.
}
]
P
l
a
n
a
r
A
n
g
l
e
[
{
C
.
,
D
.
,
E
.
}
]
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
L
i
n
e
[
{
A
.
,
B
.
}
]
,
L
i
n
e
[
{
C
.
,
D
.
}
]
}
,
"
P
a
r
a
l
l
e
l
"
]
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
L
i
n
e
[
{
B
.
,
C
.
}
]
,
L
i
n
e
[
{
D
.
,
E
.
}
]
}
,
"
P
a
r
a
l
l
e
l
"
]
,
{
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
A
.
,
C
.
,
E
.
}
,
"
C
o
l
l
i
n
e
a
r
"
]
}
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
A
.
,
C
.
,
E
.
}
,
C
o
l
l
i
n
e
a
r
]
Explanations
Let
A
B
C
,
D
C
E
be two triangles having the two sides
B
A
,
A
C
proportional to the two sides
D
C
,
D
E
, so that, as
A
B
is to
A
C
, so is
D
C
to
D
E
, and
A
B
parallel to
D
C
, and
A
C
to
D
E
; I say that
B
C
is in a straight line with
C
E
. For, since
A
B
is parallel to
D
C
, and the straight line
A
C
has fallen upon them, the alternate angles
B
A
C
,
A
C
D
are equal to one another.
[
I
.
2
9
]
For the same reason the angle
C
D
E
is also equal to the angle
A
C
D
; so that the angle
B
A
C
is equal to the angle
C
D
E
.
And, since
A
B
C
,
D
C
E
are two triangles having one angle, the angle at A, equal to one angle, the angle at
D
, and the sides about the equal angles proportional, so that, as
B
A
is to
A
C
, so is
C
D
to
D
E
, therefore the triangle
A
B
C
is equiangular with the triangle
D
C
E
;
[
V
I
.
6
]
therefore the angle
A
B
C
is equal to the angle
D
C
E
.
But the angle
A
C
D
was also proved equal to the angle
B
A
C
; therefore the whole angle
A
C
E
is equal to the two angles
A
B
C
,
B
A
C
.
Let the angle
A
C
B
be added to each; therefore the angles
A
C
E
,
A
C
B
are equal to the angles
B
A
C
,
A
C
B
,
C
B
A
.
But the angles
B
A
C
,
A
B
C
,
A
C
B
are equal to two right angles;
[
I
.
3
2
]
therefore the angles
A
C
E
,
A
C
B
are also equal to two right angles.
Therefore with a straight line
A
C
, and at the point
C
on it, the two straight lines
B
C
,
C
E
not lying on the same side make the adjacent angles
A
C
E
,
A
C
B
equal to two right angles; therefore
B
C
is in a straight line with
C
E
.
[
I
.
1
4
]
Classes
Euclid's Elements
Theorems
Triangles
EuclidBook6